

STRUCTURAL CALCULATIONS
for
AT&T LAND LINE SWITCH (SITE # CSL04566)

at
202 WEST OJAI AVENUE
OJAI, CA 93023
for
SMARTLINK
&
RAYCAP | STEALTH (AT20-02139H-29R0)

04/08/2021

BY: **JACOB PROCTOR, P.E.**
PROJECT ENGINEER

PROJECT #: **U0142.1150.211**

DATE: **January 27, 2021**
REVISED: **April 8, 2021**

DESIGNED BY TPH; CHECKED BY KJG

NOTE:

The calculations presented in this package are intended for a single use at the location indicated above, for the client listed above. These calculations shall not be reproduced, reused, "card filed", sold to a third party, or altered in any way without the written authorization of Vector Structural Engineering, LLC and RayCap | Stealth.

Copyright © 2021 Vector Structural Engineering, LLC
This Excel workbook contains proprietary information belonging to Vector Structural Engineering, LLC, and may be neither wholly nor partially copied or reproduced without the prior written permission of Vector Structural Engineering, LLC.

JOB NO.: U0142.1150.211

Copyright © 2021 Vector Structural Engineering, LLC

This Excel workbook contains proprietary information belonging to Vector Structural Engineering, LLC, and may be neither wholly nor partially copied or reproduced without the prior written permission of Vector Structural Engineering, LLC.

PROJECT: AT&T LAND LINE SWITCH

Design Criteria:

Code: Structural design is based on the California Building Code, 2019 Edition (2018 IBC) and the ASCE 7-16 standard.

Wind: Basic wind speed = 93 mph (3-second gust) per the ASCE 7-16 standard

Risk Category: II

Wind exposure: B

Seismic: Component Importance Factor, $I_p = 1.0$

Risk Category: II

Mapped spectral response accelerations: $S_s = 2.232g$ $S_1 = 0.835g$

Site class: D

Spectral response coefficients: $S_{DS} = 1.786g$ $S_{D1} = 0.946g$

Seismic design category: E

Analysis procedure: Equivalent Lateral Force

General Notes:

- 1 The contractor shall verify dimensions, conditions and elevations before starting work. The engineer shall be notified immediately if any discrepancies are found.
- 2 The typical notes and details shall apply in all cases unless specifically detailed elsewhere. Where no detail is shown, the construction shall be as shown for other similar work and as required by the building code.
- 3 These calculations are limited to the structural members shown in these calculations only. The connection of the members shown in these calculations to the existing structure shall be by others, with the exception of those explicitly shown on the drawings.
- 4 The contractor shall be responsible for compliance with local construction safety orders. Approval of shop drawings by the architect or structural engineer shall not be construed as accepting this responsibility.
- 5 All structural framing members shall be adequately shored and braced during erection and until full lateral and vertical support is provided by adjoining members.

Structural Steel:

- 1 All structural steel code checks based on the AISC, 15th Edition per the ASCE 7 standard
- 2 All steel rectangular tubes (HSS) to be per ASTM A500 GR. B (46 KSI), U.N.O.
- 3 All other structural steel shapes & plates shall be per ASTM A36, U.N.O.
- 4 All bolts for steel-to-steel connections shall be per ASTM F3125 GR. A325 U.N.O.
- 5 All bolted connections shall be tightened per the "turn-of-nut" method as defined by AISC.
- 6 All welding shall be performed by certified welders in accordance with the latest edition of the American Welding Society (AWS) D1.1
- 7 All steel surfaces shall be galvanized in accordance with ASTM A123 and ASTM F2329 standards, thoroughly coated with a zinc-rich primer, or otherwise protected as noted on the structural drawings.

Fiberglass Reinforced Plastic (FRP):

- 1 All structural shapes shall be Bedford Reinforced Plastics produced using the pultrusion process.
- 2 All cut edges and holes shall be sealed with a resin compatible with the resin matrix used in the structural shape.
- 3 The fabricator and contractor shall exercise precautions necessary to protect the fiberglass pultruded structural shapes from abuse to prevent breakage, nicks, gouges, etc. during fabrication, handling, and installation.
- 4 Structural shapes shall be fabricated and assembled as indicated on the design drawings.
- 5 FRP threaded rods and nuts shall be tightened to snug tight and turned an additional 1/2 turn and locked with epoxy.

JOB NO.: U0142.1150.211

Copyright © 2021 Vector Structural Engineering, LLC
This Excel workbook contains proprietary information belonging to Vector Structural Engineering, LLC, and may be neither wholly nor partially copied or reproduced without the prior written permission of Vector Structural Engineering, LLC.

PROJECT: AT&T Land Line Switch

Flat Roof Parapet Component & Cladding Wind Load

Label: Screenwall

Note: Calculations per ASCE 7-16

INPUT DATA:

Basic Wind Speed, V [mph]:	93
Exposure Category:	B
Elevation Above Sea Level (ft):	760
Top of Parapet Elevation, z = h _p (ft):	35.0
Building Height w/o Parapet (ft):	24.4
Parapet Around Perimeter and Greater than 3':	Yes
Building Least Horizontal Dimension (ft):	50
Component Width (ft):	5.5
Component Height (ft):	9.0

Velocity Pressure, q_p:

Velocity Pressure Exposure Coefficient, K _z :	0.73	Table 26.10-1
Topographic Factor, K _{zt} :	1.0	Section 26.8.2
Wind Directionality Factor, K _d :	0.85	Table 26.6-1
Ground Elevation Factor, K _e :	0.97	Table 26.9-1
Velocity Pressure, q _p :	13.4	Equation 30.9-1

$$K_z = 2.01(z / z_g)^{(2/\alpha)}$$

Table 26.11-1

Nom. Ht. of Atmospheric Bound Layer, z _g (ft):	1200	Table 26.11-1
3-s Gust-Speed Power Law Exponent, α :	7.0	Table 26.11-1
Minimum Height, z _{min} (ft):	30	Table 26.11-1

Component & Cladding Area (ft ²):	49.5	
Zone Dimensions, a (ft):	5	Figures 30.3-1 & 30.5-1
Gable Roofs $\theta \leq 7^\circ$ Zone Dimensions (ft):	21	Figure 30.3-2A

h ≤ 60 ft

Case A (Positive Wall - Negative Roof)		Case B (Positive Wall - Negative Wall)	
Positive Wall		Positive Wall	
Zones 4 & 5		Zones 4 & 5	
Negative Roof Zones -2	36.5 psf (1.0 Wind)	Negative Wall -4	22.4 psf (1.0 Wind)
Roof Zones -3	36.5 psf (1.0 Wind)	Wall -5	24.5 psf (1.0 Wind)

*If a parapet equal to or higher than 3 ft (0.9 m) is provided around the perimeter of the roof with $\theta \leq 7^\circ$, the negative values of (GCp) in Zone 3 shall be equal to those for Zone 2, and positive values of (GCp) in Zones 2 & 3 shall be set equal to those for wall Zones 4 & 5, respectively, in Fig. 30.3-1.

JOB NO.: U0142.1150.211

Copyright © 2021 Vector Structural Engineering, LLC

This Excel workbook contains proprietary information belonging to Vector Structural Engineering, LLC, and may be neither wholly nor partially copied or reproduced without the prior written permission of Vector Structural Engineering, LLC.

PROJECT: AT&T LAND LINE SWITCH

LOADS SUMMARY

Label: Representative section of screenwall FRP: Bedford

Dead Load, D:

Component:	Weight							
	2.00	psf	Area =	49.5	ft^2	Total =	99	lb
Stealth® ESSV Panel:	2.23	plf	Length =	12	ft	Total =	27	lb
4x4x3/8 FRP Angle:	4.24	plf	Length =	10	ft	Total =	42	lb
4x4x3/8 FRP Tube:	10.70	plf	Length =	2.583333	ft	Total =	28	lb
HSS4-1/2x4-1/2x3/16:	30.63	psf	Area =	0.5625	ft^2	Total =	17	lb
3/4" Steel Plate:								
Misc:	37	lb	Number =	1		Total =	37	lb
						W _p =	250	lb

Wind Load, W:

p =	21.9	psf	(ASD pressure - see wind calcs)
Height, h:	9.0	ft	
Max. Horiz. Dim.:	5.5	ft	V _{trans} :
Min. Horiz. Dim.:	0.0	ft	1084 lb

Controls

Seismic Load, E: Consider Seismic: Yes

Architectural Component: Cantilever element unbraced or braced below center of mass

Risk Category:	II	F _a =	1.2
Seismic Design Category:	E	F _v =	1.7
I _p =	1.0	S _{MS} =	2.678
Site Class:	D	S _{M1} =	1.420
R _p =	2.5	S _{DS} =	1.786
S _s =	2.232	S _{D1} =	0.946
S ₁ =	0.835		

a _p =	2.5	0.7 * F _{p,min} =	94	lb
z =	1.0	0.7 * F _{p,max} =	500	lb
h =	1.0	0.7 * F _{p,trans} =	375	lb
z/h =	1.0	0.7 * F _{p,vert} =	63	lb

JOB NO.: U0142.1150.211

Copyright © 2021 Vector Structural Engineering, LLC

This Excel workbook contains proprietary information belonging to Vector Structural Engineering, LLC, and may be neither wholly nor partially copied or reproduced without the prior written permission of Vector Structural Engineering, LLC.

PROJECT: AT&T LAND LINE SWITCH

ENCLOSURE CALCULATIONS

FRP Member Design for Bending & Shear:

Label: Max span girt Beam assumed to be simply supported.
Note: The force is horizontal.

INPUT:

Area Load [psf]: 21.9 (0.6W)

Span, L [ft]: 5.5

Tributary Width [ft]: 4.5

Distributed Load, w [plf]: 98.5

Beam: 4x4x3/8 Angle

Notes:

I [in⁴]: 4.36 A_w [in²]: 2.86
S [in³]: 1.52 E [psi]: 2,800,000
A [in²]: 2.86 G [psi]: 450,000

OUTPUT:

Moment, M [lb-ft]: 372

Shear, V [lb]: 271

Deflection, Δ [in]: 0.12

Note: Calculated deflection is based on reduced wind pressure per Table 1604.3. Shear contribution is neglected.

Deflection, Δ =

L / 568 5wL⁴/(384EI)

f_b [psi]: 2,941 < F_b [psi]: 10,000 OK

f_v [psi]: 95 < F_v [psi]: 1,500 OK

Select 4x4x3/8 Angle FRP beam

See attached FRP material and section properties.

JOB NO.: U0142.1150.211

Copyright © 2021 Vector Structural Engineering, LLC

This Excel workbook contains proprietary information belonging to Vector Structural Engineering, LLC, and may be neither wholly nor partially copied or reproduced without the prior written permission of Vector Structural Engineering, LLC.

PROJECT: AT&T LAND LINE SWITCH

FRP Cantilevered Column Design:

Label: Typical column

INPUT:

W₁ [lb]: 542
W₂ [lb]: 542
h₁ [ft]: 7.5
h₂ [ft]: 0.5
Column: 4x4x3/8 Tube

Notes:

I [in⁴]: 12.04 A_w [in²]: 2.44
S [in³]: 6.02 E [psi]: 2,800,000
A [in²]: 5.44 G [psi]: 450,000

OUTPUT:

Moment, M [lb-ft]: 4,334
Shear, V [lb]: 1,084

f_b [psi]: 8,640 < F_b [psi]: 10,000 OK
f_v [psi]: 444 < F_v [psi]: 1,500 OK

Select 4x4x3/8 Tube FRP column

FRP Shear Connection w/ FRP Bolts:

Label: Girt to clip angle

INPUT:

Design Force, P [lb]: 542
FRP Bolt Diameter, d_b [in]: 1/2
Bolts, n_b: (2)
FRP Web Thickness, t_w [in]: 3/8
Double Shear: No
Bearing Stress: Crosswise
Factor of Safety, FS: 4

Notes:

OUTPUT:

f_{brg} [psi]: 1,445 < F_{brg} [psi]: 3,750 OK
P_{bolt} [lb]: 271 < P_{bolt} [lb]: 850 OK

Select (2) 1/2" diameter FRP bolts

See attached FRP material and section properties.

JOB NO.: U0142.1150.211

Copyright © 2021 Vector Structural Engineering, LLC

This Excel workbook contains proprietary information belonging to Vector Structural Engineering, LLC, and may be neither wholly nor partially copied or reproduced without the prior written permission of Vector Structural Engineering, LLC.

PROJECT: AT&T LAND LINE SWITCH

FRP Tension Connection w/ FRP Bolts:

Label: Clip angle to column FRP bolt thread shear capacity will control.

INPUT:

Design Force, P [lb]:	542
FRP Bolt Diameter, d_b [in]:	1/2
# Bolts, n_b :	(2)
# FRP Nuts/Bolt/End:	(1)
Factor of Safety, FS:	4

Notes:

P_{allow} [lb]: 2,400

$$P'_{allow} = \frac{P_{allow} n_b}{FS}$$

OUTPUT:

Capacity, P'_{allow} [lb]: 1,200 > 542 **OK**

Select (2) 1/2" diameter FRP bolts

See attached FRP material and section properties.

JOB NO.: U0142.1150.211

Copyright © 2021 Vector Structural Engineering, LLC

This Excel workbook contains proprietary information belonging to Vector Structural Engineering, LLC, and may be neither wholly nor partially copied or reproduced without the prior written permission of Vector Structural Engineering, LLC.

PROJECT: AT&T Land Line Switch

DESIGN APPROACH: ASD

MEMBER IN BENDING Location: HSS column base

Steel Shape: HSS4-1/2x4-1/2x3/16

Moment Capacity: 10800 ft-lbs (AISC Chapter 3)

Maximum Moment: 6592 ft-lbs

Check Member: 61.0%

Result: **Selected member size is adequate.**

Note:

PLATE IN BENDING Location: Base plate

Plate depth: 0.75 in

Intermediate Values

Plate width: 6 in

$L_b d/t^2$ 0.03645833

Moment arm/unbraced length: 1.75 in

S_x 0.5625 in³

Yield strength: 36 ksi

Z_x 0.844 in³

Moment capacity: 1515.72 ft-lbs

Load: 1163 lbs

Moment: 170 ft-lbs

Check Plate: 11.2%

Result: **Selected plate is adequate.**

Note: Condition A, joists parallel to screen.

JOB NO.: U0142.1150.211

Copyright © 2021 Vector Structural Engineering, LLC

This Excel workbook contains proprietary information belonging to Vector Structural Engineering, LLC, and may be neither wholly nor partially copied or reproduced without the prior written permission of Vector Structural Engineering, LLC.

PROJECT: AT&T Land Line Switch

PLATE IN BENDING

Location: Base plate

Plate depth:	0.75	in	<u>Intermediate Values</u>		
Plate width:	6	in	$L_b d/t^2$ 0.03645833		
Moment arm/unbraced length:	1.75	in	S_x	0.5625	in ³
Yield strength:	36	ksi	Z_x	0.844	in ³
Moment capacity:	1515.72	ft-lbs			

Load:	9900	lbs
Moment:	1444	ft-lbs

Check Plate: 95.3%

Result: **Selected plate is adequate.**

Note: Condition B, joists perpendicular to screen.

WELD

Location: Torsion tube to base plate

Type:	Groove	
Effective Groove Weld Size:	0.1875	in
Length of Weld:	6	in
Weld Strength:	42	ksi
Weld Capacity:	23625	lbs

Load:	17600	lbs
-------	-------	-----

Check Weld: 74.5%

Result: **Selected weld is adequate.**

Note:

JOB NO.: U0142.1150.211

Copyright © 2021 Vector Structural Engineering, LLC

This Excel workbook contains proprietary information belonging to Vector Structural Engineering, LLC, and may be neither wholly nor partially copied or reproduced without the prior written permission of Vector Structural Engineering, LLC.

PROJECT: AT&T Land Line Switch

BOLTED SHEAR CONNECTION

Location: Span tube to base plate

Bolt Grade: A307
Bolt Diameter: 1 in
Number of Bolts: 1
Double Shear? Yes
Bolt Capacity: 21206 lbs (AISC Equation J3-1)

Shear Load: 10040 lbs

Check Bolt: 47.3%

Result: **Select (1) 1 in. dia. A307 bolt.**

Note: Center bolt is conservatively neglected. Overturning moment resolved between outside bolts.

BOLT/PIN BEARING & MATERIAL TENSILE/SHEAR STRENGTH

Bolt or Pin Diameter:	1	in	Available AISC Checks:		
Hole Diameter or Slot Width:	1.0625	in	Equation	Check?	Capacity
Number of Bolts or Pins:	1		J3-6a	Yes	5879
Plate Thickness:	0.174375	in	J3-6b	No	
Plate Yield Strength (F_y):	46	ksi	J3-6c	No	
Plate Ultimate Strength (F_u):	58	ksi	J7-1	Yes	7219
Bolt/Pin Parallel Edge Distance:	1.5	in	(measured from center of hole)		
Bearing Capacity:	5879	lbs			
Perpendicular Edge Distance:	1.5	in	(measured from center of hole)		
Effective Perp. Edge Distance:	1				
Tensile Rupture Capacity:	9798	lbs	(AISC Equation D5-1)		
Shear Rupture Capacity:	8913	lbs	(AISC Equation D5-2)		
Load:	5020	lbs			

Check Bearing: 85.4%

Result: **Selected connection type is adequate.**

Note:

JOB NO.: U0142.1150.211

Copyright © 2021 Vector Structural Engineering, LLC

This Excel workbook contains proprietary information belonging to Vector Structural Engineering, LLC, and may be neither wholly nor partially copied or reproduced without the prior written permission of Vector Structural Engineering, LLC.

PROJECT: AT&T Land Line Switch

BOLTED SHEAR CONNECTION

Location: Torsion tube to base plate

Bolt Grade: A307
Bolt Diameter: 1 in
Number of Bolts: 3
Double Shear?: No
Bolt Capacity: 31809 lbs (AISC Equation J3-1)

Shear Load: 17600 lbs

Check Bolt: 55.3%

Result: **Select (3) 1 in. dia. A307 bolts.**

Note: Overturning moment is resolved by the width of the torsion tube.

BOLT/PIN BEARING

Location: Torsion tube to base plate

& MATERIAL TENSILE/SHEAR STRENGTH

Bolt or Pin Diameter:	1	in	Available AISC Checks:		
Hole Diameter or Slot Width:	1.0625	in	Equation	Check?	Capacity
Number of Bolts or Pins:	3		J3-6a	Yes	5879
Plate Thickness:	0.174375	in	J3-6b	No	
Plate Yield Strength (F_y):	46	ksi	J3-6c	No	
Plate Ultimate Strength (F_u):	58	ksi	J7-1	Yes	7219
Bolt/Pin Parallel Edge Distance:	1.5	in	(measured from center of hole)		
Bearing Capacity:	17636	lbs			

Perpendicular Edge Distance: 1.5 in (measured from center of hole)

Effective Perp. Edge Distance:

1

Tensile Rupture Capacity: 29393 lbs (AISC Equation D5-1)

Shear Rupture Capacity: 26738 lbs (AISC Equation D5-2)

Load: 17600 lbs

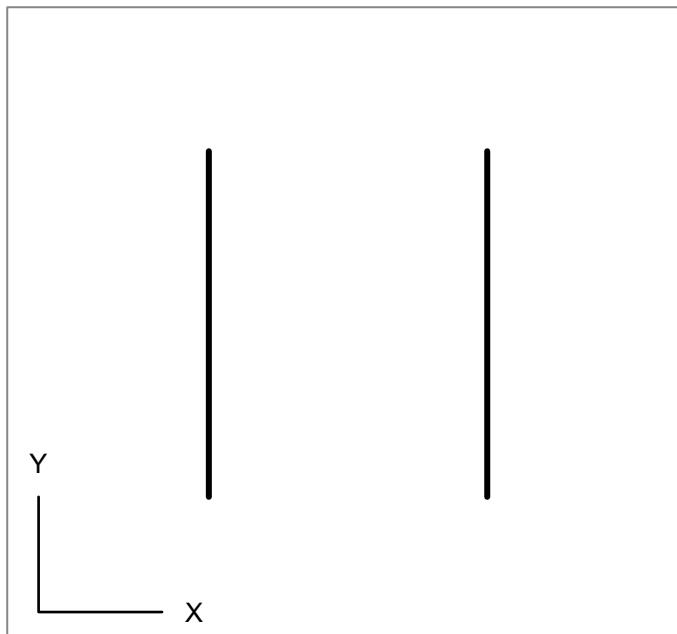
Check Bearing: 99.8%

Result: **Selected connection type is adequate.**

Note:

WELDED CONNECTION WITH FILLET WELDS TREATED AS LINES

Description: Base sleeve to span tube


Geometry

Weld Pattern: Double weld line, vertical
 b (in) = 4.5 (parallel to x-axis)
 d (in) = 6 (parallel to y-axis)

 S_{XWELD} (in²) = 12.00
 S_{YWELD} (in²) = 27.00
 I_{pWELD} (in³) = 96.75
 L_{weld} (in) = 12.00
 Torque arm (in) = 3.75

Graphic Scale: 100%

Results

Electrode Class
 Number (ksi): 70
 Required leg size (in) = 0.106
 Actual leg size (in) = 3/16
 Stress ratio: 56.6%

Loads on Weld Group

Load Type:	ASD	
Axial _(Z) (lb) =	0	v_{axial} (lb/in) = 0
Shear _X (lb) =	542	v_{shearx} (lb/in) = 45
Shear _Y (lb) =	125	v_{sheary} (lb/in) = 10
Moment _{XX} (ft-lb) =	0	$v_{momentxx}$ (lb/in) = 0
Moment _{YY} (ft-lb) =	0	$v_{momentyy}$ (lb/in) = 0
Torque _(ZZ) (ft-lb) =	3295.883	v_{torque} (lb/in) = 1533
		v_{max} (lb/in) = 1575

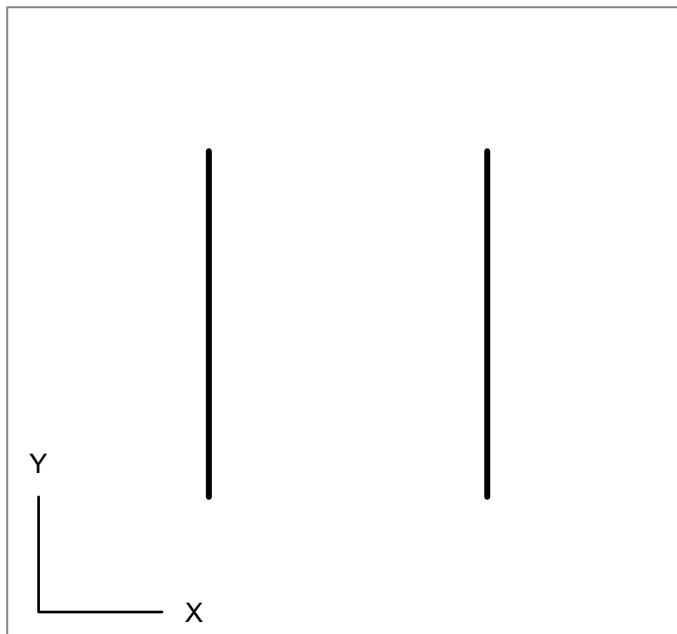
JOB NO.: U0142.1150.211

PROJECT: AT&T Land Line Switch

SUBJECT: WELD GROUP ANALYSIS

WELDED CONNECTION WITH FILLET WELDS TREATED AS LINES

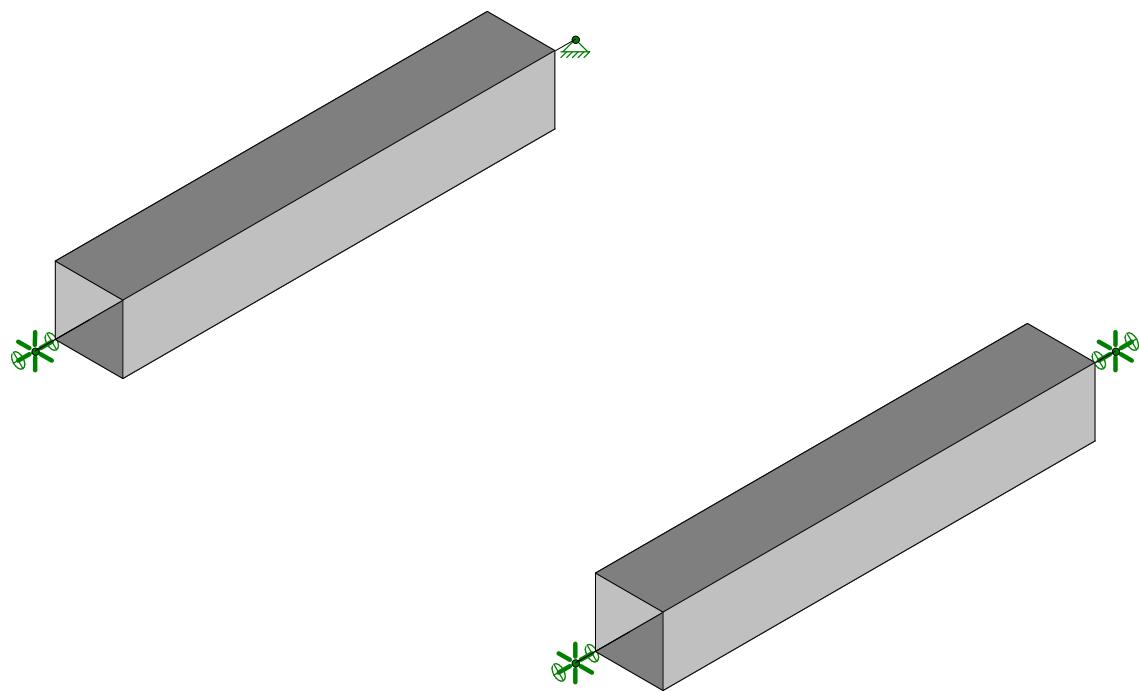
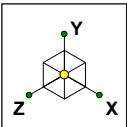
Description: Base sleeve to span tube


Geometry

Weld Pattern: Double weld line, vertical
b (in) = 4.5 (parallel to x-axis)
d (in) = 6 (parallel to y-axis)

 S_{XWELD} (in²) = 12.00
 S_{YWELD} (in²) = 27.00
 I_{pWELD} (in³) = 96.75
 L_{weld} (in) = 12.00
Torque arm (in) = 3.75

Graphic Scale: 100%

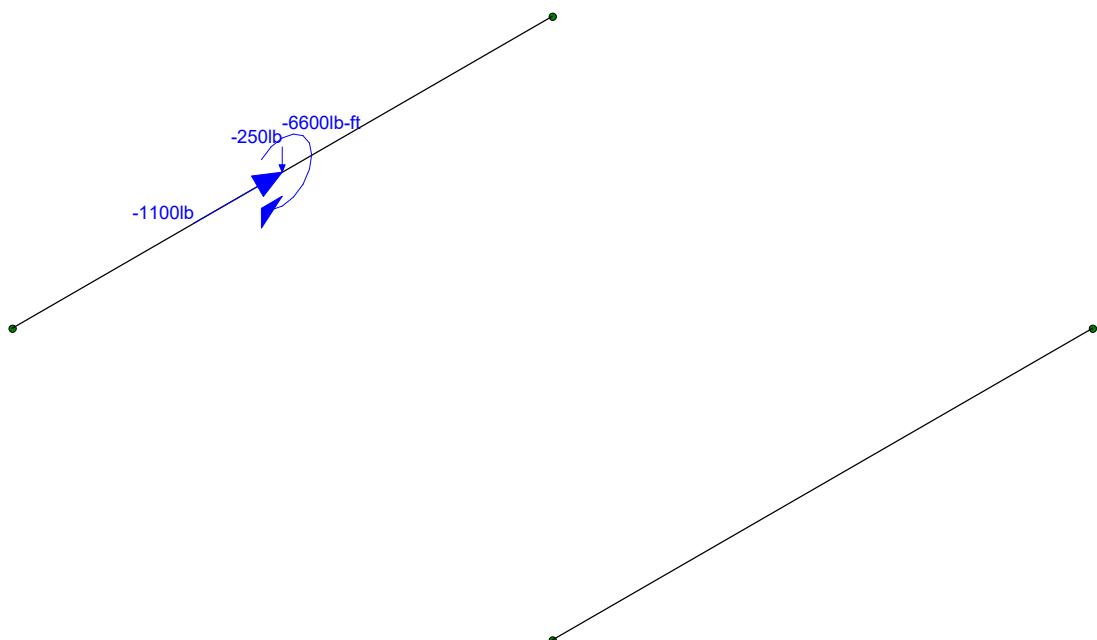
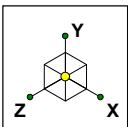


Results

Electrode Class
Number (ksi): 70
Required leg size (in) = 0.099
Actual leg size (in) = 3/16
Stress ratio: 52.6%

Loads on Weld Group

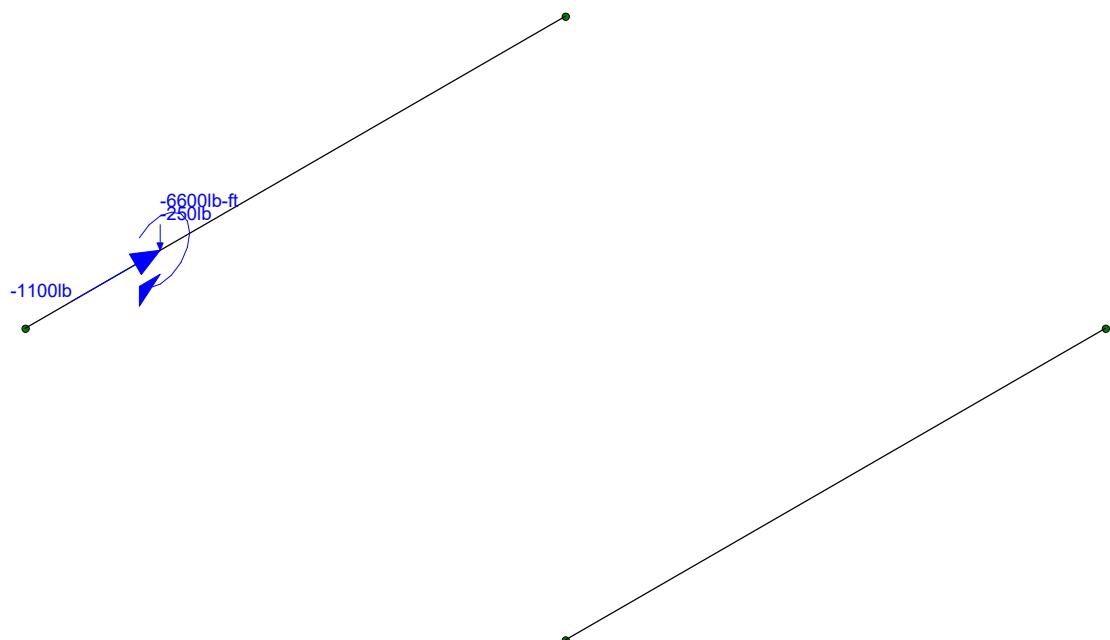
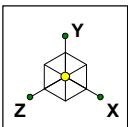
Load Type:	ASD	
Axial _(Z) (lb) =	541.789	v_{axial} (lb/in) = 45
Shear _X (lb) =	0	v_{shearx} (lb/in) = 0
Shear _Y (lb) =	17578.04	v_{sheary} (lb/in) = 1465
Moment _{XX} (ft-lb) =	0	$v_{momentxx}$ (lb/in) = 0
Moment _{YY} (ft-lb) =	0	$v_{momentyy}$ (lb/in) = 0
Torque _(ZZ) (ft-lb) =	0	v_{torque} (lb/in) = 0
		v_{max} (lb/in) = 1466

Loads: BLC 7,

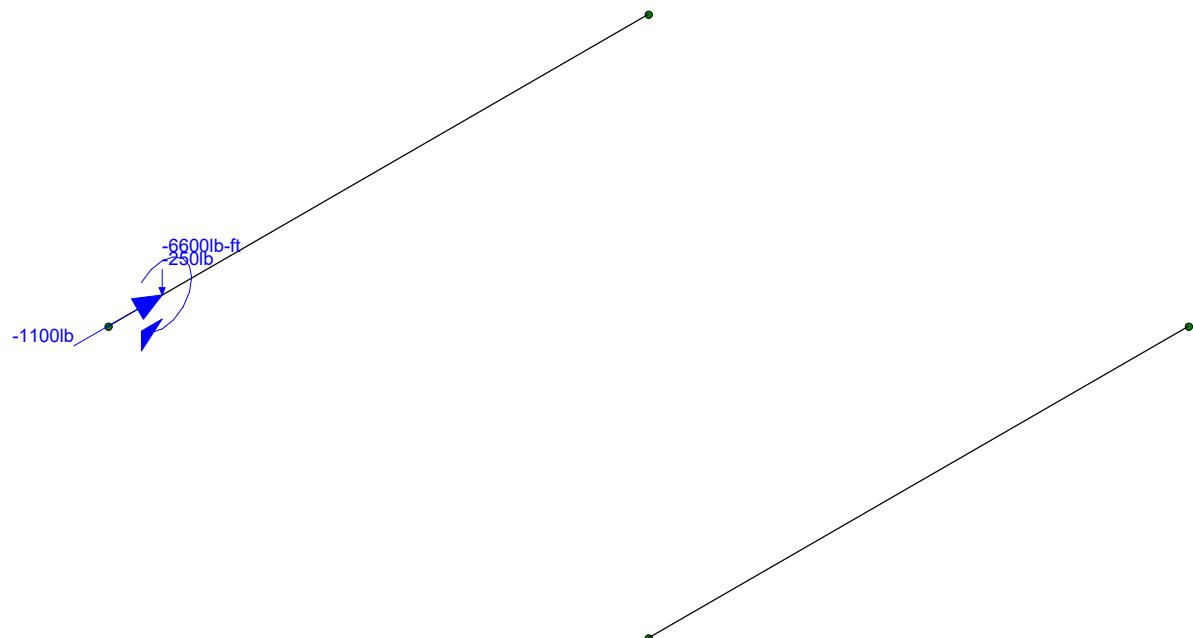
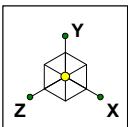


Vector Structural Engineeri...

TPH

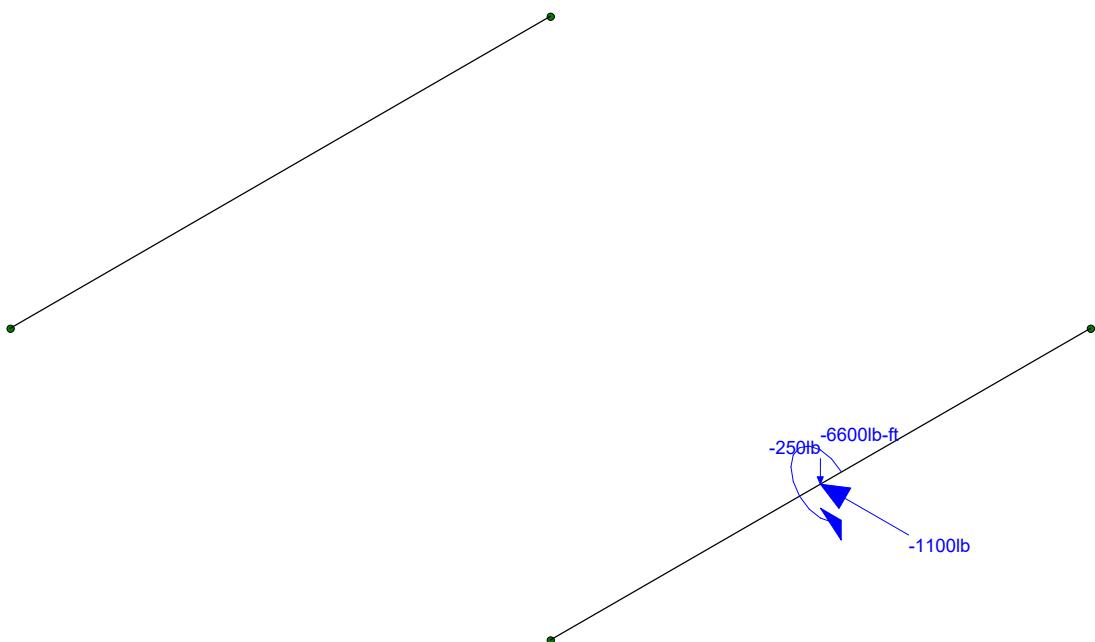
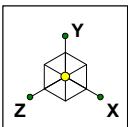
SK - 1



Apr 8, 2021 at 6:41 PM

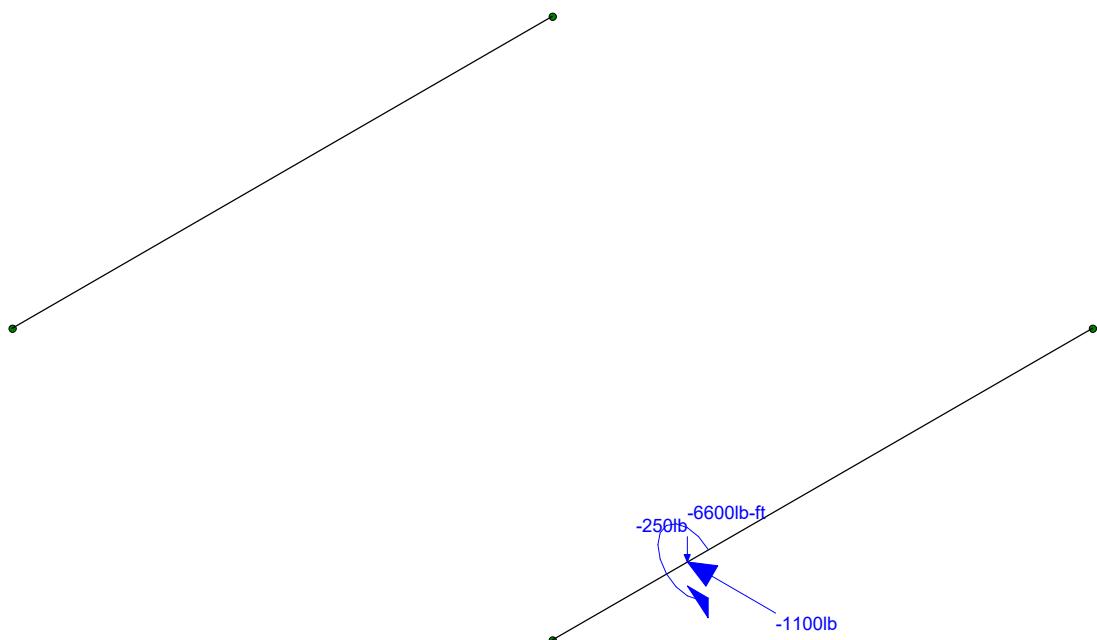
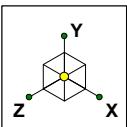
Base tubes.r3d



Loads: BLC 1, Reactions 1 Mid-Span

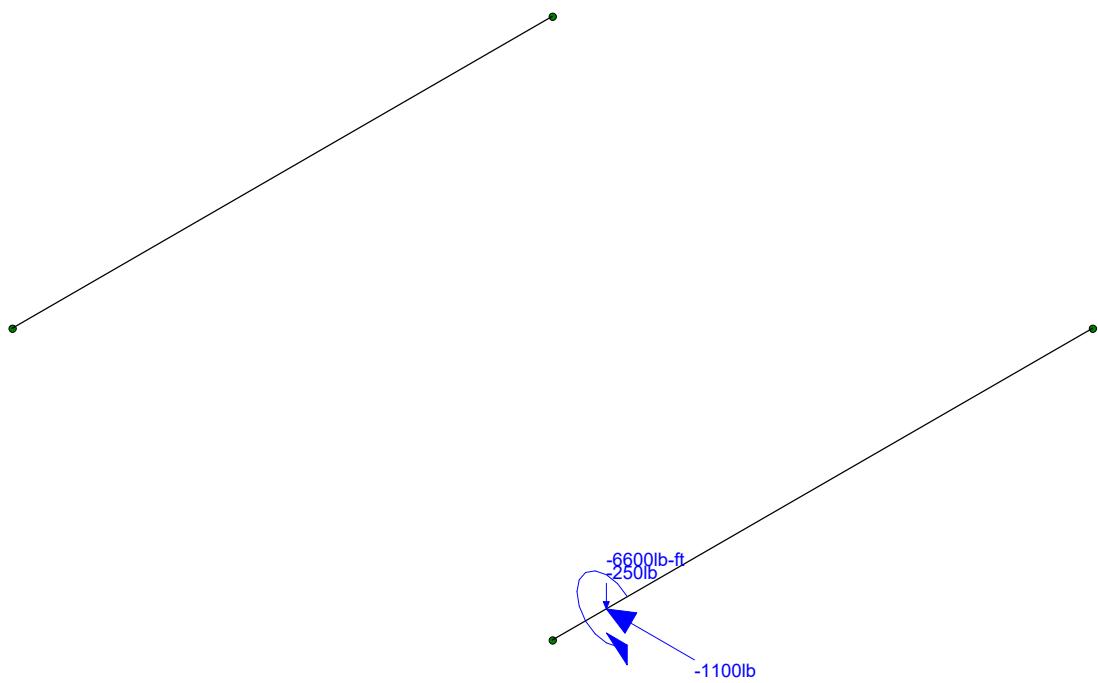
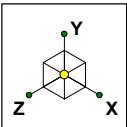
Vector Structural Engineeri...	SK - 2 Apr 8, 2021 at 6:41 PM Base tubes.r3d
TPH	



Loads: BLC 2, Reactions 1 Quarter Span

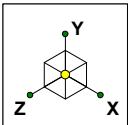
Vector Structural Engineer...	SK - 3
TPH	Apr 8, 2021 at 6:41 PM
	Base tubes.r3d



Loads: BLC 3, Reactions 1 1/10 Span

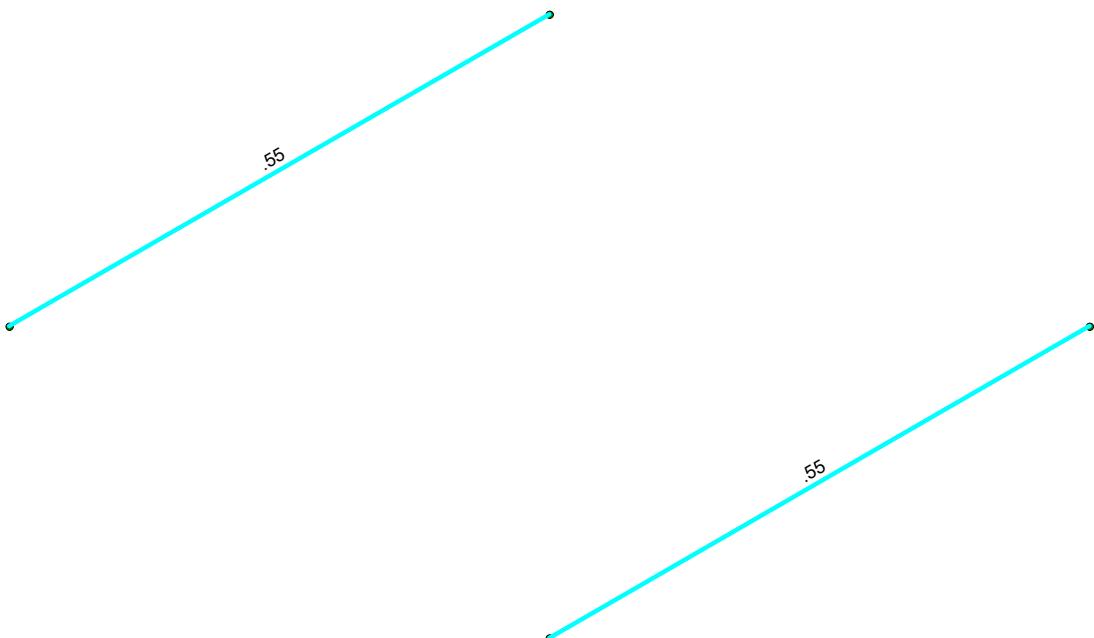
Vector Structural Engineeri...	SK - 4
TPH	Apr 8, 2021 at 6:41 PM
	Base tubes.r3d



Loads: BLC 4, Reactions 2 Mid-Span

Vector Structural Engineeri...	SK - 5
TPH	Apr 8, 2021 at 6:41 PM
	Base tubes.r3d


Loads: BLC 5, Reactions 2 Quarter Span

Vector Structural Engineeri...	SK - 6
TPH	Apr 8, 2021 at 6:42 PM
	Base tubes.r3d



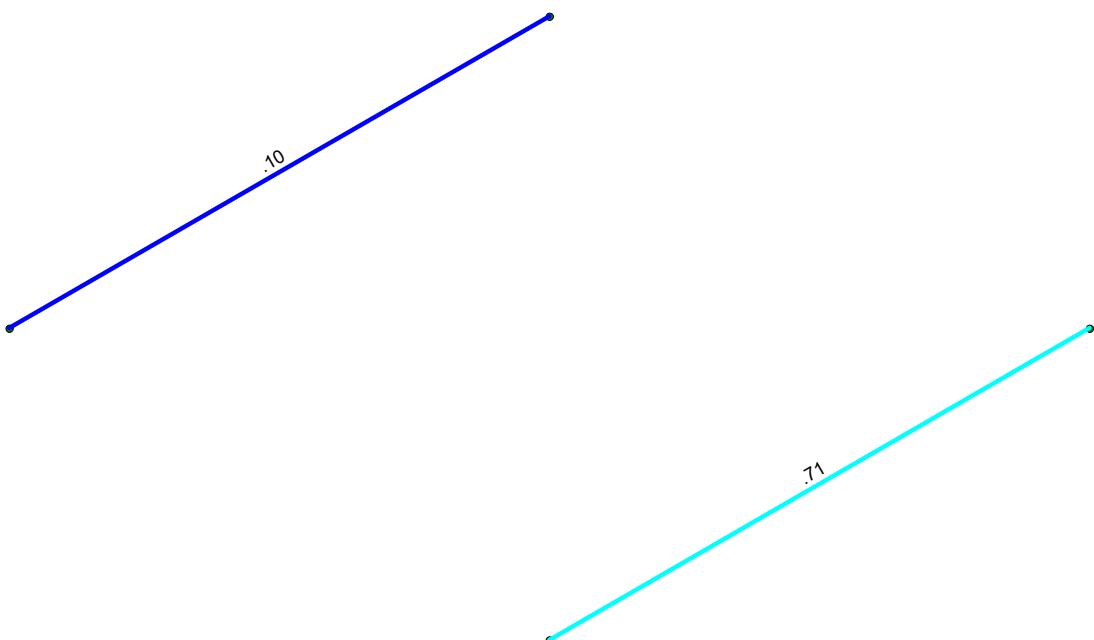
Loads: BLC 6, Reactions 2 1/10 Span

Vector Structural Engineeri...	SK - 7
TPH	Apr 8, 2021 at 6:42 PM
	Base tubes.r3d

Code Check (Env)	
No Calc	
> 1.0	
.90-1.0	
.75-.90	
.50-.75	
0.-.50	

Member Code Checks Displayed (Enveloped)
Envelope Only Solution

Vector Structural Engineeri...
TPH


SK - 8

Apr 8, 2021 at 6:42 PM

Base tubes.r3d

Shear Check (Env)	
No Calc	
> 1.0	
.90-1.0	
.75-.90	
.50-.75	
0.-.50	

Member Shear Checks Displayed (Enveloped)
Envelope Only Solution

Vector Structural Engineeri...
TPH

SK - 9

Apr 8, 2021 at 6:42 PM

Base tubes.r3d

(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include Warping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in ²)	16
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P-Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	Yes
Max Iterations for Wall Stiffness	3
Gravity Acceleration (ft/sec ²)	32.2
Wall Mesh Size (in)	24
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Y
Global Member Orientation Plane	XZ
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver

Hot Rolled Steel Code	AISC 14th(360-10): ASD
Adjust Stiffness?	Yes(Iterative)
RISAConnection Code	None
Cold Formed Steel Code	None
Wood Code	None
Wood Temperature	< 100F
Concrete Code	None
Masonry Code	None
Aluminum Code	None - Building
Stainless Steel Code	None

Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parmer Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	No
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min % Steel for Column	1
Max % Steel for Column	8

(Global) Model Settings, Continued

Seismic Code	None
Seismic Base Elevation (ft)	Not Entered
Add Base Weight?	Yes
Ct X	.02
Ct Z	.02
T X (sec)	Not Entered
T Z (sec)	Not Entered
R X	3
R Z	3

Hot Rolled Steel Properties

Label	E [ksi]	G [ksi]	Nu	Therm (/1E...)	Density[k/ft...]	Yield[ksi]	Ry	Fu[ksi]	Rt
1 A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
2 A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
3 A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
4 A500 Gr.B RND	29000	11154	.3	.65	.527	42	1.4	58	1.3
5 A500 Gr.B Rect	29000	11154	.3	.65	.527	46	1.4	58	1.3
6 A53 Gr.B	29000	11154	.3	.65	.49	35	1.6	60	1.2
7 A1085	29000	11154	.3	.65	.49	50	1.25	65	1.15
8 A913 Gr.65	29000	11154	.3	.65	.49	65	1.1	80	1.1

Hot Rolled Steel Section Sets

Label	Shape	Type	Design List	Material	Design R...	A [in2]	Iyy [in4]	Izz [in4]	J [in4]	
1	Span 1	HSS4.5X4.5X3	Beam	None	A500 Gr.B Rect	Typical	2.93	9.02	9.02	14.4
2	Span 2	HSS4.5X4.5X3	Beam	None	A500 Gr.B Rect	Typical	2.93	9.02	9.02	14.4

Joint Boundary Conditions

Joint Label		X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N1	Reaction	Reaction	Reaction			
2	N2	Reaction	Reaction	Reaction			Reaction
3	N3	Reaction	Reaction	Reaction			Reaction
4	N4	Reaction	Reaction	Reaction			Reaction

Member Primary Data

Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rules
1	M1	N2	N1		Span 1	Beam	None	A500 Gr.B..	Typical
2	M2	N4	N3		Span 2	Beam	None	A500 Gr.B..	Typical

Member Advanced Data

Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl Rat...	Analysis ...	Inactive	Seismic...
1	M1					Yes				None
2	M2					Yes				None

Hot Rolled Steel Design Parameters

Label	Shape	Length[ft]	Lbyy[ft]	Lbzz[ft]	Lcomp top[ft]	Lcomp bot[ft]	L-torqu...	Kyy	Kzz	Cb	Function
1	M1	Span 1	3			Lbyy					Lateral
2	M2	Span 2	3			Lbyy					Lateral

Basic Load Cases

BLC Description		Category	X Grav...	Y Grav...	Z Grav...	Joint	Point	Distrib...	Area(M..	Surfac...
1	Reactions 1 Mid-Span	None					3			
2	Reactions 1 Quarter Span	None					3			
3	Reactions 1 1/10 Span	None					3			
4	Reactions 2 Mid-Span	None					3			
5	Reactions 2 Quarter Span	None					3			
6	Reactions 2 1/10 Span	None					3			

Load Combinations

Envelope Joint Reactions

Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
1	N1	max	0	6	2325	1	550	1	0	6	0	6	0
		min	0	1	0	4	0	4	0	1	0	1	0
3	N2	max	0	6	0	6	990	3	0	6	0	6	0
		min	0	1	-2075	1	0	4	0	1	0	1	0
5	N3	max	550	4	125	4	0	6	0	6	0	6	0
		min	0	1	0	1	0	1	0	1	0	1	-3300
7	N4	max	990	6	225	6	0	6	0	6	0	6	0
		min	0	1	0	1	0	1	0	1	0	1	-5940
9	Totals:	max	1100	6	250	6	1100	3					
10		min	0	1	250	1	0	4					

Envelope Member Section Forces

Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear...	LC	Torque...	LC	y-y Moment[lb-ft]	LC	z-z Mo...	LC
1	M1	1	max	0	6	0	6	0	6	0	6	0	6	0
			min	-990	3	-2075	1	0	1	0	1	0	1	0
3		2	max	275	2	0	6	0	6	0	6	0	6	1556.25
4			min	-550	1	-2262.5	2	0	1	0	1	0	1	-5090....
5		3	max	550	1	0	6	0	6	0	6	0	6	0
6			min	0	4	-2325	1	0	1	0	1	0	1	-3487.5
7		4	max	550	1	0	6	0	6	0	6	0	6	0
8			min	0	4	-2325	1	0	1	0	1	0	1	-1743.75
9		5	max	550	1	0	6	0	6	0	6	0	6	0
10			min	0	4	-2325	1	0	1	0	1	0	1	0
11	M2	1	max	0	6	225	6	990	6	5940	6	0	6	0
12			min	0	1	0	1	0	1	0	1	0	1	0
13		2	max	0	6	125	4	550	4	3300	4	618.75	5	0
14			min	0	1	-62.5	5	-275	5	-1650	5	0	1	-140.625
15		3	max	0	6	0	3	0	3	0	3	825	4	0
16			min	0	1	-125	4	-550	4	-3300	4	0	1	-187.5
17		4	max	0	6	0	3	0	3	0	3	412.5	4	0
18			min	0	1	-125	4	-550	4	-3300	4	0	1	-93.75
19		5	max	0	6	0	3	0	3	0	3	0	6	0
20			min	0	1	-125	4	-550	4	-3300	4	0	1	0

Envelope AISC 14th(360-10): ASD Steel Code Checks

Member	Shape	Code ...	Loc[ft]	LC	Shear ...	Loc[ft]	Dir	LC	Pnc/om	[I...Pnt/om	[lb]	Mnyy/om...	Mnzz/om...	Cb	Eqn
1	M1	HSS4.5X4.5...	.554	.313	3	.102	1.5	y	1	78453.13680706.587	10811.377	10811.377	1...	H1-1b	
2	M2	HSS4.5X4.5...	.546	.281	6	.706	0	z	6	78453.13680706.587	10811.377	10811.377	1...	H3-6	

TYPICAL COUPON PROPERTIES

Below are test results for typical coupon properties of Bedford Reinforced Plastics' structural fiberglass profiles (Standard, Fire Retardant, & Vinylester shapes). Properties are derived per the ASTM test method shown. Synthetic surfacing veil and ultraviolet inhibitors are standard.

MECHANICAL PROPERTIES	ASTM	ENGLISH		METRIC	
		Units	Value	Units	Value
Tensile Stress, LW	D-638	psi	30,000	MPa	206.8
Tensile Stress, CW	D-638	psi	7,000	MPa	48.2
Tensile Modulus, LW	D-638	10^6 psi	2.5	GPa	17.2
Tensile Modulus, CW	D-638	10^6 psi	.8	GPa	5.5
Compressive Stress, LW	D-695	psi	30,000	MPa	206.8
Compressive Stress, CW	D-695	psi	15,000	MPa	103.4
Compressive Modulus, LW	D-695	10^6 psi	2.5	GPa	17.2
Compressive Modulus, CW	D-695	10^6 psi	1.0	GPa	6.9
Flexural Stress, LW	D-790	psi	30,000	MPa	206.8
Flexural Stress, CW	D-790	psi	10,000	MPa	68.9
Flexural Modulus, LW	D-790	10^6 psi	1.8	GPa	12.4
Flexural Modulus, CW	D-790	10^6 psi	.8	GPa	5.5
Modulus of Elasticity, E	Full Section	10^6 psi	2.8	GPa	19.3
Shear Modulus	--	10^6 psi	0.450	GPa	3.1
Short Beam Shear	D-2344	psi	4,500	MPa	31.0
Punch Shear	D-732	psi	10,000	MPa	68.9
Notched Izod Impact, LW	D-256	ft.-lbs./in.	25	J/mm	1.33
Notched Izod Impact, CW	D-256	ft.-lbs./in.	4	J/mm	.21

PHYSICAL PROPERTIES	ASTM	Units	Value	Units		Value	
				Units	Value	Units	Value
Barcol Hardness	D-2583	--	45	--	45	--	45
24 Hour Water Absorbtion	D-570	% max.	0.45	% max.	0.45	% max.	0.45
Density	D-792	lbs./in. ³	.062-.070	g/cc	1.72-1.94	g/cc	1.72-1.94
Coefficient of Thermal Expansion, LW	D-696	10^6 in./in./°F	4.4	10^6 cm./cm./°C	8	10^6 cm./cm./°C	8

ELECTRICAL PROPERTIES	ASTM	Units	Value	Units		Value	
				Units	Value	Units	Value
Arc Resistance, LW	D-495	seconds	120	seconds	120	seconds	120
Dielectric Strength, LW	D-149	kv./in.	35	kv./mm	1.37	kv./mm	1.37
Dielectric Strength, PF	D-149	volts/mil.	200	volts/mil.	200	volts/mil.	200
Dielectric Constant, PF	D-150	@60hz	5	@60hz	5	@60hz	5

Fire Retardant Polyester and Fire Retardant Vinylester Structural Profiles:

FLAMMABILITY PROPERTIES	ASTM	Units	Value	Value	
				Flame Spread	VO
Tunnel Test	E-84		25 max.		
Flammability	D-635	--	Nonburning		
UL	94				
NBS Smoke Chamber	E-662		Smoke Density 600-700		

LW = Lengthwise

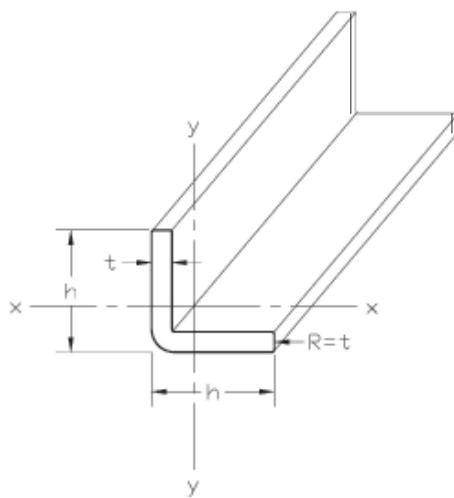
CW = Crosswise

PF = Perpendicular to Laminate Face

264 Reynoldsdale Road, Bedford, PA 15522-7401 Phone: 814-623-8125

Sales Fax: 814-623-6032 www.bedfordplastics.com E-mail: frpsales@bedfordplastics.com

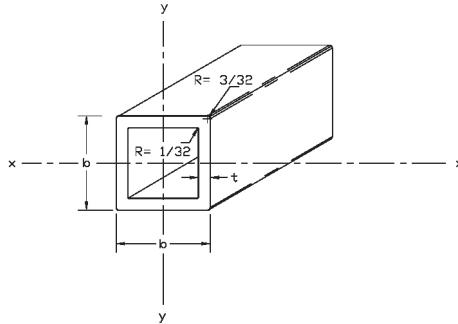
TYPICAL PROPERTIES OF THREADED ROD / NUTS


Bedford Reinforced Plastics' threaded rod and nuts are manufactured using premium vinylester resin containing UV inhibitors. The properties listed below are the result of the ASTM test method indicated.

PROPERTIES	ASTM	UNITS English <i>Metric</i>	VALUE 3/8-16 <i>9.5mm</i>	(Diameter - Threads Per Inch (UNC))				1-8 <i>25.4mm</i>
				1/2-13 <i>12.7mm</i>	5/8-11 <i>15.9mm</i>	3/4-10 <i>19.0mm</i>		
Ultimate Transverse Shear (Double Shear)	B-565	lb. <i>Newton</i>	4,200 <i>18,680</i>	6,800 <i>30,240</i>	10,000 <i>44,480</i>	13,400 <i>59,600</i>	24,000 <i>106,750</i>	
Longitudinal Compressive Strength	D-695	psi <i>MPa</i>	50,000 <i>344</i>	50,000 <i>344</i>	50,000 <i>344</i>	50,000 <i>344</i>	50,000 <i>344</i>	
Flexural Strength	D-790	psi <i>MPa</i>	70,000 <i>482</i>	70,000 <i>482</i>	70,000 <i>482</i>	70,000 <i>482</i>	70,000 <i>482</i>	
Flexural Modulus	D-790	psi x 10 ⁶ <i>GPa</i>	2.5 <i>17.2</i>	2.5 <i>17.2</i>	2.5 <i>17.2</i>	2.5 <i>17.2</i>	2.5 <i>17.2</i>	
Flammability	D-635							Self-extinguishing for all
Fire Retardant	E-84							Class 1
Water Absorption (24 hr. immersion)	D-570	% max.	0.8	0.8	0.8	0.8	0.8	
Longitudinal Coefficient of Thermal Expansion	D-696	10 ⁻⁶ in./in./°F <i>10⁻⁶ mm/mm/°C</i>	6 <i>11</i>	6 <i>11</i>	6 <i>11</i>	6 <i>11</i>	6 <i>11</i>	
Ultimate Thread Shear using fiberglass nut	--	lb. <i>Newton</i>	1,200 <i>5,337</i>	2,400 <i>10,670</i>	3,600 <i>16,010</i>	4,000 <i>17,790</i>	8,200 <i>36,470</i>	
Ultimate Torque Strength fiberglass nut lubricated with SAE 10W30 motor oil		ft.-lb. <i>NewtonMeter</i>	8 <i>10</i>	16 <i>21</i>	35 <i>47</i>	50 <i>67</i>	110 <i>149</i>	
Rod Weight	--	lb./ft. <i>Kg./m</i>	0.07 <i>0.104</i>	0.14 <i>0.119</i>	0.2 <i>0.297</i>	0.3 <i>0.447</i>	0.5 <i>0.789</i>	
Nut Weight	--	lb. <i>grams</i>	0.01 <i>4.5</i>	0.02 <i>9.1</i>	0.04 <i>18.1</i>	0.06 <i>27.2</i>	0.14 <i>63.6</i>	
Nut Dimensions	--	in. (square) x in. (thick) <i>mm. (square) x mm. (thick)</i>	.68 x .45 <i>17.2x11.4</i>	.86 x .56 <i>21.8x14.2</i>	1.06 x .69 <i>26.9x17.5</i>	1.24 x .82 <i>31.5x20.8</i>	1.63 x 1.1 <i>41.4x27.9</i>	
Color								Gray

EQUAL LEG ANGLE

SECTION DIMENSIONS				SECTION PROPERTIES			
Depth	Wall			X - X / Y - Y			
h	t	A	Wt.	I	S	r	x/y
in. / mm.	in. / mm.	in. ² / mm. ²	lb./ft. Kg./m	in. ⁴ / mm. ⁴	in. ³ / mm. ³	in. / mm.	in. / mm.
1.00	0.125	0.23	0.18	0.02	0.05	0.31	0.29
25.4	3.2	148.4	0.27	8325	819	7.9	7.4
1.25	0.125	0.29	0.22	0.04	0.05	0.38	1.36
31.8	3.2	187.1	0.33	16649	819	9.7	34.5
1.50	0.187	0.52	0.40	0.11	0.10	0.46	0.44
38.1	4.7	335.5	0.60	45785	1639	11.7	11.2
1.50	0.250	0.67	0.54	0.14	0.13	0.46	0.47
38.1	6.4	432.3	0.80	58272	2130	11.7	11.9
2.00	0.250	0.92	0.70	0.33	0.23	0.59	0.59
50.8	6.4	593.5	1.04	137356	3769	15.0	15.0
3.00	0.250	1.42	1.08	1.24	0.58	0.93	0.84
76.2	6.4	916.1	1.61	516127	9504	23.6	21.3
3.00	0.375	2.09	1.61	1.76	0.83	0.91	0.89
76.2	9.5	1348.4	2.40	732567	13601	23.1	22.6
3.00	0.500	2.70	2.11	2.22	1.07	0.91	0.93
76.2	12.7	1741.9	3.14	924034	17534	23.1	23.6
4.00	0.250	1.90	1.45	3.04	1.04	1.26	1.09
101.6	6.4	1225.8	2.16	12653.44	17043	32.0	27.7
4.00	0.375	2.84	2.18	4.35	1.52	1.24	1.14
101.6	9.5	1832.3	3.24	1810607	24908	31.5	29.0
4.00	0.500	3.70	2.89	5.56	1.97	1.23	1.18
101.6	12.7	2387.1	4.30	2314247	32283	31.2	30.0
6.00	0.375	4.28	3.46	15.76	3.60	1.89	1.64
152.4	9.525	2761.3	5.149	6559807	58993	48.03	41.66
6.00	0.500	5.70	4.45	19.91	4.60	1.87	1.68
152.4	12.7	3677.4	6.62	8287168	75380	47.5	42.7


*ENGLISH / METRIC

SQUARE TUBE

SECTION DIMENSIONS				SECTION PROPERTIES		
d	b	A	Wt.	I	S	r
in. mm.	in. mm.	in. ² mm. ²	lb./ft. kg./m	in. ⁴ mm. ⁴	in. ³ mm. ³	in. mm.
1	1/8	0.43	0.32	0.06	0.11	0.36
25.4	3.2	277.4	0.48	24974	1803	9.1
1	1/4	0.74	0.55	0.08	0.16	0.33
25.4	6.4	477.4	0.82	33299	2622	8.4
1 1/4	1/8	0.56	0.41	0.12	0.19	0.46
31.8	3.2	361.3	0.61	49948	3114	11.7
1 1/4	1/4	0.99	0.75	0.18	0.28	0.42
31.8	6.4	638.7	1.12	74922	4588	10.7
1 1/2	1/8	0.68	0.50	0.22	0.29	0.56
38.1	3.2	438.7	0.74	91571	4752	14.2
1 1/2	1/4	1.24	0.98	0.34	0.45	0.52
38.1	6.4	800.0	1.46	141519	7374	13.2
1 3/4	1/8	0.81	0.61	0.36	0.41	0.67
44.5	3.2	522.6	0.91	149843	6719	17.0
1 3/4	1/4	1.49	1.13	0.58	0.66	0.62
44.5	6.4	961.3	1.68	241414	10815	15.7
2	1/8	0.93	0.70	0.55	0.55	0.77
50.8	3.2	600.0	1.04	228927	9013	19.6
2	1/4	1.74	1.32	0.91	0.91	0.73
50.8	6.4	1122.6	1.96	378771	14912	18.5
2	3/8	2.44	1.85	1.13	1.13	0.68
50.8	9.5	1574.2	2.75	470342	18517	17.3
2 1/4	1/8	1.06	0.81	0.80	0.71	0.87
57.2	3.2	683.9	1.21	332985	11635	22.1
2 1/4	1/4	1.99	1.51	1.35	1.20	0.83
57.2	6.4	1283.9	2.25	561912	19664	21.1
3	1/8	1.43	1.08	1.98	1.32	1.18
76.2	3.2	922.6	1.61	824138	21631	30.0
3	1/4	2.74	2.07	3.50	2.33	1.13
76.2	6.4	1767.7	3.08	1456810	38182	28.7
3 1/2	1/4	3.24	2.49	5.73	3.27	1.32
88.9	6.4	2090.3	3.71	2385006	53586	33.5
4	3/8	5.43	4.24	12.03	6.01	1.48
101.6	9.5	3503.2	6.31	5007264	98486	37.6
4	1/4	3.74	2.83	8.82	4.41	1.53
101.6	6.4	2412.9	4.21	3671161	72267	38.9
6	3/8	8.27	6.54	22.35	7.45	2.29
152.4	9.5	5335.4	9.73	9302772	122083	58.2

*ENGLISH
METRIC

BEAMS

Properties / Allowables

$$E = 2.8 \times 10^6 \text{ lbs./in.}^2$$

$$E = 19.3 \text{ GPa}$$

$$G = 450,000 \text{ lbs./in.}^2$$

$$G = 3.1 \text{ GPa}$$

$$F_b = 10,000 \text{ lbs./in.}^2$$

$$F_b = 68.9 \text{ MPa}$$

$$F_v = 1500 \text{ lbs./in.}^2$$

$$F_v = 10.3 \text{ MPa}$$

Formulas

$$\Delta = \frac{5wL^4}{384EI} + \frac{wL^2}{8A_wG}$$

$$f_b = \frac{M}{S_x}$$

$$f_v = \frac{V}{A_w}$$

Allowable Critical Buckling Stress for laterally supported H and I Beams

$$F_{aCB} = \frac{\pi^2}{b_h^2 t} \left[.935 \sqrt{\left(\frac{Et^3}{12\lambda} \right) \left(\frac{\nu_T Et^3}{12\lambda} \right)} - (.656) \left(\frac{\nu_T Et^3}{12\lambda} \right) + (2.082) \left(\frac{Gt^3}{12} \right) \right] / 2.5$$

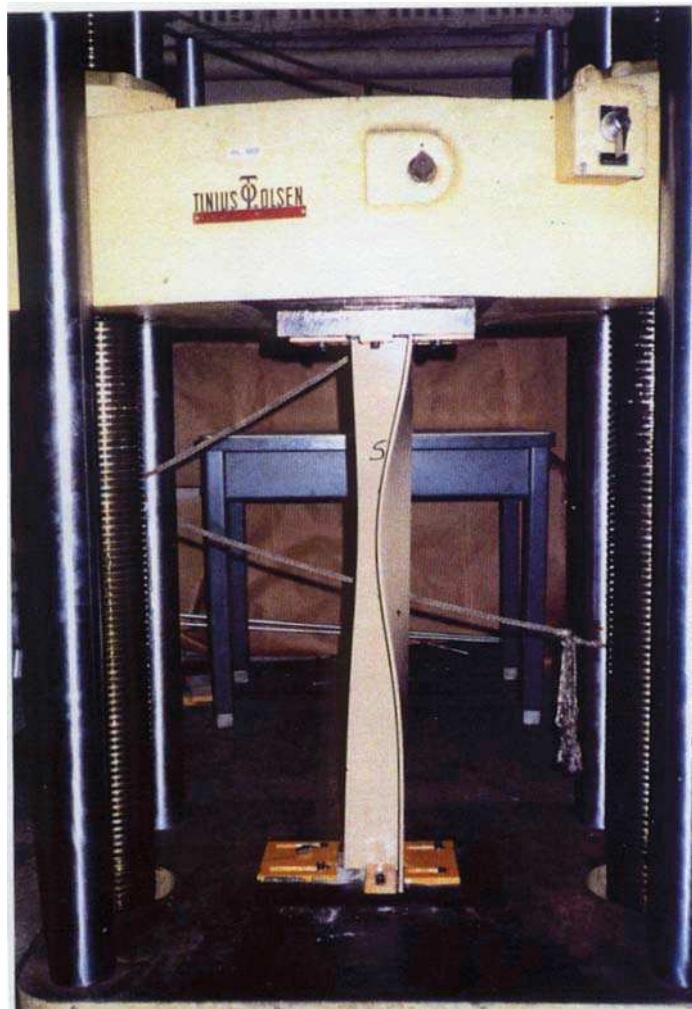
$$\lambda = (1 - \nu_L \nu_T)$$

Allowable Lateral-Torsional Buckling Stress for laterally unsupported H and I Beams

$$F_{aLTB} = \left[\frac{C\pi}{S(KL)} \sqrt{EI_y GJ + \frac{d^2 \pi^2 E^2 I_y^2}{(4)(KL)^2}} \right] / 2.5$$

C = 1.13 and K = 1.0 for uniform load simple beam*

Allowable Critical Buckling Stress for Channels laterally supported to eliminate warping and twist


$$F_{aCB} = G(t/b_c)^2 / 2.5$$

Allowable Bending Stress for Square Tube (b/t <= 16)

$$F_b = 10,000 \text{ psi.}$$

* ASCE Manuals and Reports on Engineering Practice No. 63, Structural Plastics Design Manual Volumes 1 & 2, 1984

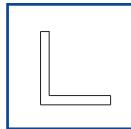
COLUMNS

Full section column testing was conducted on Bedford Reinforced Plastics' Equal Leg Angles, I-Beams, H-Beams, and Square Tubes.

Ultimate stress vs. slenderness ratio curves were developed from the testing. The curves developed are based on the Euler Buckling Stress Equation $\left[\pi^2 E \left(\frac{KL}{r} \right)^2 \right]$ and a straight line transition from Euler Buckling to ultimate stress.

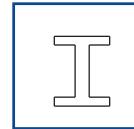
The allowable concentric axial load tables were generated from these curves.

The tables are based on a safety factor of three.


COLUMN TABLES

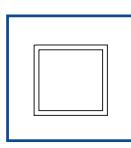
ALLOWABLE CONCENTRIC AXIAL STRESSES AND LOADS

Notation


A area (in.² / mm.²)
b width of flange/leg/wall (in. / mm.)
t thickness of flange (in. / mm.)
r minimum radius gyration (in. / mm.)
l length (in. / m.)
K effective column length factor
F_a allowable column concentric axial stress (psi / MPa)
P_a allowable column centric axial load (lbs. / N.)

Angle

Maximum allowable stress:


b/t = 6	6,000 psi / 41.3 MPa
b/t = 8	4,862 psi / 33.5 MPa
b/t = 10.7	3,501 psi / 24.1 MPa
b/t = 12	2,833 psi / 19.5 MPa
b/t = 16	1,833 psi / 12.6 MPa

H- & I-Beam

Maximum allowable stress:

b/t ≤ 12	10,000 psi / 68.9 MPa
b/t = 13.3	10,000 psi / 68.9 MPa
b/t = 16	7,318 psi / 50.5 MPa
b/t = 20	4,684 psi / 32.3 MPa
b/t = 21.3	4,117 psi / 28.4 MPa
b/t = 24	3,253 psi / 22.4 MPa
b/t = 26.7	2,635 psi / 18.1 MPa

Square Tube (1/4" wall)

Maximum allowable stress:

b/t ≤ 16	10,000 psi / 68.9 MPa
----------	-----------------------